An Evolutionary Algorithm for Solving Bilevel Programming Problems Using Duality Conditions

نویسندگان

  • Hecheng Li
  • Lei Fang
  • Yuping Wang
چکیده

Bilevel programming is characterized by two optimization problems located at different levels, in which the constraint region of the upper level problem is implicitly determined by the lower level problem. This paper is focused on a class of bilevel programmingwith a linear lower level problem and presents a new algorithm for solving this kind of problems by combining an evolutionary algorithm with the duality principle. First, by using the prime-dual conditions of the lower level problem, the original problem is transformed into a single-level nonlinear programming problem. In addition, for the dual problem of the lower level, the feasible bases are taken as individuals in population. For each individual, the values of dual variables can be obtained by taking the dual problem into account, thus simplifying the single-level problem. Finally, the simplified problem is solved, and the objective value is taken as the fitness of the individual. Besides, when nonconvex functions are involved in the upper level, a coevolutionary scheme is incorporated to obtain global optima. In the computational experiment, 10 problems, smaller or larger-scale, are solved, and the results show that the proposed algorithm is efficient and robust.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulated Annealing Approach for Solving Bilevel Programming Problem

Bilevel programming, a tool for modeling decentralized decision problems, consists of the objective of the leader at its first level and that of the follower at the second level. Bilevel programming has been proved to be an Np-hard problem. Numerous algorithms have been developed for solving bilevel programming problems. These algorithms lack the required efficiency for solving a real problem. ...

متن کامل

Simulated Annealing Approach for Solving Bilevel Programming Problem

Bilevel programming, a tool for modeling decentralized decision problems, consists of the objective of the leader at its first level and that of the follower at the second level. Bilevel programming has been proved to be an Np-hard problem. Numerous algorithms have been developed for solving bilevel programming problems. These algorithms lack the required efficiency for solving a real problem. ...

متن کامل

A Non-linear Integer Bi-level Programming Model for Competitive Facility Location of Distribution Centers

The facility location problem is a strategic decision-making for a supply chain, which determines the profitability and sustainability of its components. This paper deals with a scenario where two supply chains, consisting of a producer, a number of distribution centers and several retailers provided with similar products, compete to maintain their market shares by opening new distribution cent...

متن کامل

Shuffled Frog-Leaping Programming for Solving Regression Problems

There are various automatic programming models inspired by evolutionary computation techniques. Due to the importance of devising an automatic mechanism to explore the complicated search space of mathematical problems where numerical methods fails, evolutionary computations are widely studied and applied to solve real world problems. One of the famous algorithm in optimization problem is shuffl...

متن کامل

RESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE

In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014